a2 United States Patent

Smentek et al.

US009460013B2

US 9,460,013 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR REMOVAL OF
A CACHE AGENT

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: David Richard Smentek, Cupertino,
CA (US); Ali Vahidsafa, Palo Alto, CA
(US); Venkatram Krishnaswamy, Los
Altos, CA (US); Thirumalai Swamy

Suresh, Redwood Shores, CA (US)

Assignee: QOracle International Corporation,

Redwood Shores, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 225 days.
Appl. No.: 14/479,191
Filed: Sep. 5, 2014

Prior Publication Data

US 2016/0070646 Al Mar. 10, 2016
Int. CL.

GO6F 12/08 (2016.01)

U.S. CL

CPC ... GO6F 12/0833 (2013.01); GOGF 2212/62
(2013.01); GO6F 2212/621 (2013.01)

Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,553,409 B1* 42003 Zhang GO6F 12/0815
709/213

8,701,145 B1* 4/2014 Berger HO4N 21/4147
725/32

8,923,683 Bl1* 12/2014 Berger 386/248
8,929,717 B1* 1/2015 Berger 386/248
2002/0166031 Al* 11/2002 Chen GO6F 12/0813
711/141

2003/0018714 Al* 1/2003 Mikhailov GO6F 17/30861
709/203

2006/0177015 Al* 82006 Skakkebaek HO4L 12/58
379/67.1

2008/0189358 Al* 82008 Charles GOG6F 9/4443
709/203

2012/0042130 Al* 2/2012 Peapell GO6F 12/0866
711/126

2014/0355955 Al* 12/2014 Berger GO06Q 30/00
386/248

* cited by examiner

Primary Examiner — Charles Rones
Assistant Examiner — Matthew Chrzanowski
(74) Attorney, Agent, or Firm — Osha Liang LLP

(57) ABSTRACT

A method for removal of an offlining cache agent, including:
initiating an offlining of the offlining cache agent from
communicating with a plurality of participating cache agents
while a first transaction is in progress; setting, based on
initiating the offlining, an ignore response indicator corre-
sponding to the offlining cache agent on each of the plurality
of participating cache agents; offlining, based on setting the
ignore response indicator, the offlining cache agent; and
ignoring, based on setting the ignore response indicator, a
first response to the transaction from the offlining cache
agent.

20 Claims, 9 Drawing Sheets

| Initiate offining of offining cache agent

Step 302

¥

| Prevent offining cache agent from generating a request

Step 304

1

Re-route any traffic destined for offlining cache agent to
participating cache agents

1

Flush cache lines owned by the ofﬁlmng cache agent to

Step 308

-
-
-

¥

Step 310
Flush of cache
lines complete?

YES

Set an ignore response bit corresponding to the offlining cache
agent in an ignore response register

Step 312

1

Propagate change to ignore response register to participating
cache agents

Step 314

1

Set a stop traffic bit corresponding to the offlining cache agent
in a stop traffic register

Step 316

]

| Offline offlining cache agent

Step 318

) 1

US 9,460,013 B2

Sheet 1 of 9

Oct. 4, 2016

U.S. Patent

I "©Id
C T |
_ -l AlOL
I IV_ A 10S88201d _
_ b e e e — _
|
|
|
_ aver 3T XTOT
“ 08l g 910D D 810D X 10ss920.1d
| MIOMIBN d0c¢l) O0C L
_ 1senbay IP g 9ayoen 0 8Yoen
_ deel i Deh
I p<‘ g juaby ayoen 9 jueby ayoe)
|
i) ;
| g - -
= o 091 122"
—— ™ _@ m < SYIOMISN 8SUOdSaY puUB Ble(] NoOW [
~Z
_ accl Vel
=T g weby syoen ¢ » v 1Ueby syoen
s00IN 0] |etl——p oSl YOcl
[euo1xg ayoed vINg Y 9Yyoed
Y¥el
001 \ v 8109

walsAg

or1
Alowsy

U.S. Patent

Oct. 4, 2016 Sheet 2 of 9

Cache Agent
202

Request Table
204

Ignore Response Register
206

Stop Traffic Register
208

Cache
210

Cache line A 212A

Cache line B 212B

Cache line C 212C

Core
220

FIG. 2

US 9,460,013 B2

U.S. Patent Oct. 4, 2016 Sheet 3 of 9

START

US 9,460,013 B2

Initiate offlining of offlining cache agent

Step 302
e p

v

Prevent offlining cache agent from generating a request

/— Step 304

Y

Re-route any traffic destined for offlining cache agent to
participating cache agents

/— Step 306

Y

Flush cache lines owned by the offlining cache agent to
memory

Step 310

Flush of cache
lines complete?

NO

YES

v

Set an ignore response bit corresponding to the offlining cache
agent in an ignore response register

Y

Propagate change to ignore response register to participating
cache agents

v

Set a stop traffic bit corresponding to the offlining cache agent
in a stop traffic register

v

Offline offlining cache agent

END
FIG. 3

U.S. Patent Oct. 4, 2016 Sheet 4 of 9 US 9,460,013 B2

START

— Step 402
Power on offlining cache agent

'

Clear stop traffic bit corresponding to offlining cache agent in |/ Step 404
stop traffic register

!

Clear ignore response bit corresponding to offlining cache |/~ Step 406
agent in ignore response register

'

Wait for change to ignore response register to propagate to |/~ Step 408
participating cache agents

l

— Step 410
Online offlining cache agent

END

FIG. 4

U.S. Patent Oct. 4, 2016 Sheet 5 of 9
s Step 502

Receive request to access a cache line from
requesting cache agent

YES

Step 508

Stop traffic bit
corresponding
offlining cache agent
set?

NO
Step 512

US 9,460,013 B2

/— Step 510

Ignore
request
(No response)

Step 516
yau p

END

Cache of offlining
cache agent includes
cache line?

Send negative
acknowledgment

(Nack) response to
requesting cache agent

YES

'

Step 514
yau p

Send positive
acknowledgment (Ack)

response and data in cache
line to requesting cache
agent

FIG. 5A

U.S. Patent Oct. 4, 2016 Sheet 6 of 9 US 9,460,013 B2

START

/— Step 552

Send, by requesting cache agent (RCA), a request
to access a cache line to all cache agents including
offlining cache agent (OCA)

Step 554

corresponding to
OCA set in the Ignore

Q
YES Response Register
of the
Step 556 RCA?

Has a response
from the OCA been
received?

NG

Do not wait for a response
from the OCA and assume
the response from the OCA
YES is Nack.

l ya Step 560

Discard response from OCA and
assume the response from the OCA
is Nack

Step 562
ya p

— Aggregate responses —

END

FIG. 5B

U.S. Patent Oct. 4, 2016 Sheet 7 of 9

Cache Agent A
602A

Request Table A 604A—\

Ignore Response Register A 606A

1000
Nack——p1

Stop Traffic Register A 608A

Cache Agent B
6028

Request Table B 604Bﬁ
| Request B 6058 |

Ignore Response Register B 606B

Stop Traffic Register B 608B

g—Request B—
Cache AB10A ™y Cache B 610B ™y
| | Cache line B1 612B
Core A G20A Cache line B2 614B
Ore A e Cache line B3 616B
Core B 620B
Nack Ack RequestB
Request B
Cache Agent C Cache Agent D
602C 602D
Request Table C 6040—\ Request Table D 604D—‘
Ignore Response Register C 606C Ignore Response Register D 606D
0000 0000
Stop Traffic Register C 608C Stop Traffic Register D 608D
——>
Cache C 61OCj Cache D 610D —y
Cache line C1 612C B Cache line D1 612D
Cache line C2 614C Cache line D2 614D
Cache line D3 616D
Core C 620C —

Core D 620D

FIG. 6A

US 9,460,013 B2

U.S. Patent

Oct. 4, 2016

Cache Agent A
602A

Request Table A 604A—}

Ignore Response Register A 606A

Stop Traffic Register A 608A

Cache A 610A —y

Core A 620A

Cache Agent C
602C

Request Table C 6040—‘

Ignore Response Register C 606C

Stop Traffic Register C 608C

Nack—»

Cache C 610C —

Cache line C1612C |
Cache line C2 614C

Sheet 8 of 9

Cache Agent B
602B

Request Table B 604Bﬂ

Ignore Response Register B 606B

Stop Traffic Register B 608B

Cache B 610B —™y
Cache line B1612B
Cache line B2 6148
Cache line B3 %

Core B 620B

Request D Nack

Cache Agent D
602D

Request Table D 604Dj
| Request D 605D |

Ignore Response Register D 606D

Stop Traffic Register D 608D

i 4—Request D—

Core C 620C

Cache D 610D —y
Cache line D1 612

Cache line D2 614

——

Cache line D3 616D

o

O

Core D 620D

FIG. 6B

US 9,460,013 B2

U.S. Patent Oct. 4, 2016 Sheet 9 of 9 US 9,460,013 B2

700

Computing
/ System

708
Output Device(s)

704 702
Memory Computer
Processor(s)
706
Storage
Device(s)

!

710
Input Device(s)

FIG. 7

US 9,460,013 B2

1
METHOD AND SYSTEM FOR REMOVAL OF
A CACHE AGENT

BACKGROUND

In a multiprocessor and/or multicore shared memory
system, each processor and/or processing core may have a
separate cache or set of caches that connect to the same
shared memory. Processors and processing cores may each
update the processor’s or processing core’s respective local
cache. Cache coherence or cache coherency refers to the
consistency of data stored in local caches based on the
updates to the local caches.

SUMMARY

In general, in one aspect, the invention relates to a method
for removal of an offlining cache agent. The method com-
prises: initiating an offlining of the offlining cache agent
from communicating with a plurality of participating cache
agents while a first transaction is in progress; setting, based
on initiating the offlining, an ignore response indicator
corresponding to the offlining cache agent on each of the
plurality of participating cache agents; offlining, based on
setting the ignore response indicator, the offlining cache
agent; and ignoring, based on setting the ignore response
indicator, a first response to the transaction from the offlining
cache agent.

In general, in one aspect, the invention relates to a
non-transitory computer-readable storage medium storing a
plurality of instructions for removal of an offlining cache
agent. The plurality of instructions comprise functionality
to: initiate an offlining of the offlining cache agent from
communicating with a plurality of participating cache agents
while a first transaction is in progress; set, based on initiating
the offlining, an ignore response indicator corresponding to
the offlining cache agent on each of the plurality of partici-
pating cache agents; offline, based on setting the ignore
response indicator, the offlining cache agent; and ignore,
based on propagating setting the ignore response indicator,
a first response to the transaction from the offlining cache
agent.

In general, in one aspect, the invention relates to a system.
The system comprises: a plurality of cache for storing a
plurality of cache lines, and a plurality of cache agents
comprising a plurality of participating cache agents and an
offlining cache agent, wherein each cache of the plurality of
cache corresponds to one of the plurality of cache agents,
and wherein the plurality of cache agents are configured to:
initiate an offlining of the offlining cache agent from com-
municating with a plurality of participating cache agents
while a first transaction is in progress, wherein the first
transaction is for a cache line of the plurality of cache lines,
set, based on initiating the offlining, an ignore response
indicator corresponding to the offlining cache agent on each
of the plurality of participating cache agents, offline, based
on setting the ignore response indicator, the offlining cache
agent, and ignore, based on setting the ignore response
indicator, a first response to the transaction from the offlining
cache agent.

Other aspects of the invention will be apparent from the
following description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

FIGS. 1 and 2 show schematic diagrams of a system in
accordance with one or more embodiments of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 3, 4, 5A, and 5B show flowcharts in accordance
with one or more embodiments of the invention.

FIGS. 6A and 6B show an example in accordance with
one or more embodiments of the invention.

FIG. 7 shows a computing system in accordance with one
or more embodiments of the invention.

DETAILED DESCRIPTION

Specific embodiments of the invention will now be
described in detail with reference to the accompanying
figures. Like elements in the various figures are denoted by
like reference numerals for consistency.

In the following detailed description of embodiments of
the invention, numerous specific details are set forth in order
to provide a more thorough understanding of the invention.
However, it will be apparent to one of ordinary skill in the
art that the invention may be practiced without these specific
details. In other instances, well-known features have not
been described in detail to avoid unnecessarily complicating
the description.

In general, embodiments of the invention relate to a
system and method for removal of a cache agent from a
system. As used herein, the cache agent being removed is
referred to as an offlining cache agent. Specifically, embodi-
ments of the invention relate to removal of the offlining
cache agent while transactions between the offlining cache
agent and participating cache agents in the system are in
progress. In one or more embodiments of the invention, the
system complies with a coherency protocol that directs each
participating cache agent and potentially the offlining cache
agent to respond to any request sent by a requesting cache
agent for data. Embodiments of the invention further related
to responding to or ignoring a request from any requesting
cache agent while the offlining cache agent is being removed
without disrupting the cache coherency between the caches
corresponding to the remaining participating cache agents.

FIG. 1 shows a system (100) in accordance with one or
more embodiments of the invention. As shown in FIG. 1, the
system (100) includes processor X (101X) and optionally
processor Y (101Y). In one or more embodiments of the
invention, a processor (e.g., processor X (101X), processor
Y (101Y)) may be an integrated circuit for processing
instructions. For example, the processor may be one or more
cores, or micro-cores of a processor. In the case of multiple
processors (e.g., processor X (101X), processor Y (101Y)),
the multiple processors may be located or embedded on the
same chip or on different chips. Processor X (101X) includes
one or more cores that are each operatively connected to one
or more caches. For example, processor X (101X) includes
core A (124A) operatively connected to cache A (120A),
core B (124B) operatively connected to cache B (120B), and
core C (124C) operatively connected to cache C (120C).
Although FIG. 1 shows three cores and caches, the processor
may include more or fewer cores and caches without depart-
ing from the scope of the invention. Processor X (101X)
may also includes a gateway (152) operatively connected to
the gateways of other processors (e.g., processor Y (101Y)).
Processor Y (101Y) may include similar types of compo-
nents (not shown).

In one or more embodiments of the invention, processor
X (101X) includes a Direct Memory Access (DMA) cache
(130) operatively connected to one or more external devices
(132) and a memory controller unit (MCU) (144). In one or
more embodiments of the invention, the DMA cache (130)
stores contents of memory addresses from the one or more
external devices (132). In one or more embodiments of the

US 9,460,013 B2

3

invention, external devices (132) (e.g., a printer, external
storage, flash memory stick) are connected to, but are not a
part of processor X (101X) (i.e., off-processor). In other
words, a device is external when the device is not a part of
the processor. For example, the external device may be on a
different chip. In one or more embodiments of the invention,
the MCU (144) is hardware and/or software that include
functionality to communicate with off-processor memory
(146). Processor Y (101Y) may also include a DMA cache
(not shown) and an MCU (not shown).

In one or more embodiments of the invention, cores (e.g.,
core A (124A), core B (124B), core C (124C)) are hardware
central processing units that read and execute program
instructions. In order to execute instructions, the cores
(124A-124C) and/or external devices (132) access (e.g.,
read from and/or write to) one or more memory addresses in
memory (146). In one or more embodiments of the inven-
tion, memory (146) may correspond to random access
memory (RAM), dynamic random access memory
(DRAM), or any physical memory.

In one or more embodiments of the invention, the contents
of some memory addresses may be locally stored in one or
more caches (e.g., cache A (120A), cache B (120B), cache
C (120C), DMA cache (130)), which have faster access
times than memory (146). Said another way, a cache is a
portion of memory (e.g., RAM) that a core may access more
quickly than memory (146) in accordance with one or more
embodiments of the invention. If a cache (120A-120C, 130)
is not storing the contents of a required memory address, a
cache miss occurs.

In one or more embodiments of the invention, processor
X (101X) includes one or more cache agents (e.g., cache
agent A (122A), cache agent B (122B), cache agent C
(122C), cache agent D (122D))) operatively connected to the
caches (120A-120C, 130). For example, processor X (101X)
includes cache agent A (122A) operatively connected to
cache A (120A), cache agent B (122B) operatively con-
nected to cache B (120B), cache agent C (122C) operatively
connected to cache C (120C), and cache agent D (122D)
operatively connected to DMA cache (130). Similarly, pro-
cessor Y (101Y) may include cache agents that are opera-
tively connected to caches (not shown).

In one or more embodiments of the invention, a cache
agent (e.g., cache agent A (122A), cache agent B (122B),
cache agent C (122C), and cache agent D (122D)) is
software and/or hardware associated with a core or any
cache controller that has ownership of a cache. Each cache
agent may have a corresponding one or more caches that do
not correspond to any other cache agent. For example, as
shown in FIG. 1, cache agent A (122A) is associated with
core A (124A), cache agent B (122B) is associated with core
B (124B); cache agent C (122C) is associated with core C
(124C), and cache agent D (122D) is associated with a DMA
controller (not shown). In one or more embodiments of the
invention, a cache agent (122A-122B) includes functionality
to broadcast a request for data (e.g., cache line) to other
cache agents and receive a response and potentially the
requested data from the other cache agents. In one or more
embodiments of the invention, a response may either be a
negative acknowledgment (Nack) if the cache line is not
present or a positive acknowledgment if the cache line is
present. The cache agents include further functionality to
send responses upon receiving a request for data. In one or
more embodiments of the invention, sending a request and
receiving a response is referred to as a transaction.

Still referring to FIG. 1, on processor X (101X), the MCU
(144), and the one or more cache agents are operatively

5

10

15

20

25

30

35

40

45

50

55

60

65

4

connected by a request network (180). In one or more
embodiments of the invention, request network (180) is a set
of wired or wireless communication channels that include
functionality to transmit requests and forward requests from
a cache agent to any cache agents using network commands.
One possible implementation for the request network (180)
is one or more rings. Accordingly, a request propagates
around the one or more rings to each cache agent. Alterna-
tively or additionally, the request network (180) may be
implemented using physical wires to form the one or more
rings between the cache agents rather than using network
commands.

In one or more embodiments of the invention, the cache
agents (e.g., 122A-122D) may be part of a system that
complies with a protocol (e.g., snoopy-based protocol). In
one or more embodiments of the invention, the protocol
directs the system to keep contents of memory addresses
consistent across cache agents that comply with the protocol
to establish coherency. More specifically, in one or more
embodiments of the invention, a snoopy-based protocol
directs each cache agent complying with the protocol to
respond to any request sent by a requesting cache agent. In
one or more embodiments of the invention, a requesting
cache agent is a cache agent that generates a request to the
remaining cache agents.

In one or more embodiments of the invention, processor
X (101X) includes data and response networks (160) for
transmitting responses to requests and the data associated
with some responses. In one or more embodiments of the
invention, at least one network in the data and response
networks (160) is a point-to-point network. In one or more
embodiments of the invention, in a point-to-point network,
each cache agent includes a direct connection to each other
cache agents. For example, cache agent A has a direct
connection to every other cache agent in the request network
(180). Although the data and response networks (160) are
logically separate from the request network (180), transmis-
sion of responses and data may be executed over the same
physical network or physical wires as the requests.

Although FIG. 1 shows one processor (i.e., Processor X
(101X)) and an optional second processor (i.e., Processor Y
(101Y)), the system (100) may have any number of proces-
sors. Further, although processor X (101X) only shows three
caches (i.e., Cache A (120A), Cache B (120B), Cache C
(120C)), each processor may have any number of caches.
Further still, although FIG. 1 shows only one core opera-
tively connected to each cache, there may be any number of
cores attached to each cache. Moreover, different caches
may be attached to different numbers of cores.

Further, although FIG. 1 only shows one gateway on
processor X (101X), in one or more embodiments of the
invention, a single processor has multiple gateways. In such
embodiments, each gateway of the multiple gateways on the
processor is responsible for a portion of the cache lines. In
other words, requests associated with a given cache line are
only handled by one predetermined gateway of the multiple
gateways on the processor.

Finally, although FIG. 1 shows caches (122A-122C, 130),
in one or more embodiments of the invention, a cache
hierarchy exists where contents of memory addresses from
memory (146) are stored first in one or more [.3 caches then
one or more [.2 caches followed by one or more L1 caches
(not shown).

While FIG. 1 shows a configuration of components, other
configurations may be used without departing from the
scope of the invention. For example, various components
may be combined to create a single component. As another

US 9,460,013 B2

5

example, the functionality performed by a single component
may be performed by two or more components. By way of
a more concrete example, the cache agent may be the
corresponding core or may be instructions that execute on
the corresponding core of the system. In such a scenario, the
cache agent and core may be combined into a single com-
ponent.

FIG. 2 shows a cache agent, a cache, and a core in
accordance with one or more embodiments of the invention.
The cache agent (202) may be the same or similar to any of
the cache agents (122A-122D) discussed above in reference
to FIG. 1. The cache (210) may be the same or similar to any
of the caches (120A-120C, 130) discussed above in refer-
ence to FIG. 1. Further, the core (220) may be the same or
similar to any of the cores (124A-124C) discussed above in
reference to FIG. 1.

In one or more embodiments of the invention, the cache
agent (202) includes a request table (204), an ignore
response register (206) and a stop traffic register (208). In
one or more embodiments of the invention, the request table
(204) is any data structure (e.g., hash table, array, linked list,
etc.) that stores any requests that the cache agent (202) is
directed to send to other cache agents to comply with the
protocol. A request may be removed from the request table
(204) once all responses to the request from the other cache
agents are sent to the cache agent (202).

In one or more embodiments of the invention, the ignore
response register (206) includes an ignore response indicator
for each cache agent including the cache agent (202). Each
ignore response indicator defines whether responses from a
cache agent should be ignored (i.e., not process the positive
or negative acknowledgement).

In one or more embodiments of the invention, the ignore
response indicator is an ignore response bit. For example,
the ignore response bit may be set to 0 to represent “do not
ignore responses from the cache agent corresponding to the
ignore response bit” and set to 1 to represent “ignore
responses from the cache agent corresponding to the ignore
response bit”. For example, consider the scenario in which
four cache agents in the system exist. In this example, the
ignore response register includes 0000. Since the ignore
response bits are all set to zero, none of the cache agents
should be ignored. As another example, suppose there are
three cache agents in the system. The ignore response
register may be 010. Cache agent 0 should not be ignored
since the ignore response bit corresponding to cache agent 0
is set to 0, cache agent 1 should be ignored since the ignore
response bit corresponding to cache agent 1 is set to 1, and
cache agent 2 should not be ignored since the ignore
response bit corresponding to cache agent 2 is set to 0. In one
or more embodiments of the invention, each cache agent
stores a local copy of the ignore response register.

The above is only an example. Other values to represent
that whether a response should be ignored may be used
without departing from the invention. Further, rather than
using a bit string to represent whether to ignore response, the
ignore response register may use another data structure to
represent whether to ignore the response.

In one or more embodiments of the invention, the stop
traffic register (208) includes a stop traffic indicator corre-
sponding to the cache agent (202). In one or more embodi-
ments of the invention, the stop traffic indicator indicates
whether the local cache agent should receive requests and
transmit responses.

In one or more embodiments of the invention, the stop
traffic indicator is a stop traffic bit. For example, if the stop
traffic bit is set to 0, any requests may be received by the

10

15

20

25

30

35

40

45

50

55

60

65

6

cache agent (202) and the cache agent generates a response
as a result. In contrast, if the stop traffic bit is set to 1, any
requests are not received by the cache agent (202) thereby
idling the interface of the cache agent. For example, con-
sider the scenario in which cache agent 1 has a stop traffic
bit set to 1. Cache agent 0 then sends a request to cache agent
1. Since the stop traffic bit of cache agent 1 is set to 1, the
request is prevented from reaching cache agent 1 (e.g., not
received). Therefore, no response from cache agent 1 is
generated.

The above is only an example. Other values to represent
that a request should not be processed may be used without
departing from the invention. Further, rather than using a bit
to represent whether to stop traffic, the stop traffic register
may use another data structure to represent whether to stop
traffic.

In one or more embodiments of the invention, the cache
(210) includes functionality to store one or more cache lines
(e.g., cache line A (212A), cache line B (212B), cache line
C (2120)). In one or more embodiments of the invention, a
cache line (212A-212C) is the smallest unit of memory that
may be copied from memory to a cache. Said another way,
a cache line (212A-212C) is stored in an entry in a cache and
corresponds to a copy of data located at one or more memory
addresses in memory. Further, a cache line (212A-212C)
may also be held by another cache in the system.

FIGS. 3-5 show flowcharts in accordance with one or
more embodiments of the invention. While the various steps
in these flowcharts are presented and described sequentially,
one of ordinary skill will appreciate that some or all of the
steps may be executed in different orders, may be combined
or omitted, and some or all of the steps may be executed in
parallel. Furthermore, the steps may be performed actively
or passively. For example, some steps may be performed
using polling or be interrupt driven in accordance with one
or more embodiments of the invention. By way of an
example, determination steps may not require a processor to
process an instruction unless an interrupt is received to
signify that condition exists in accordance with one or more
embodiments of the invention. As another example, deter-
mination steps may be performed by performing a test, such
as checking a data value to test whether the value is
consistent with the tested condition in accordance with one
or more embodiments of the invention.

FIG. 3 shows a flowchart for removal of an offlining cache
agent from a system in accordance with one or more
embodiments of the invention. In one or more embodiments
of the invention, offlining a cache agent is placing the cache
agent in a condition such that the cache agent no longer
performs functionality as part of (e.g., removed or isolated
from) a system. Said another way, a cache agent that has
been offlined no longer operates as a part of the overall
system in which the cache agent exists. In one or more
embodiments of the invention, before a cache agent may be
offlined, one or more additional steps are taken. In one or
more embodiments of the invention, the additional steps
(e.g., at least one or more of Steps 302-316, described
below) along with the actual step of taking a cache agent
offline (e.g., Step 318, described below) are referred to
herein as removal.

In Step 302, offlining of an offlining cache agent is
initiated in accordance with one or more embodiments of the
invention. In one or more embodiments of the invention, an
offlining cache agent is one of the cache agents in the system
that is set for removal from the system. In one or more
embodiments of the invention, setting the offlining cache

US 9,460,013 B2

7

agent for removal may be automatic or initiated by a user
(e.g., hardware engineer, system administrator, hardware
developer).

For example, consider the scenario in which a system
includes 32 cache agents on a chip, which are not all
executing to complete capacity. In order to manage power
consumption, one or more cache agents may be selected to
be offlining cache agents. In this example, a user may select
the offlining cache agents based on power management
requirements and/or work load requirements of the 32 cache
agents. Additionally or alternatively, the processor executing
an algorithm may detects work load of the chip and select
cache agents that are not currently required (e.g., idle) to be
offlining cache agents. As another example, a cache agent
may require maintenance. In this example, the cache agent
may be selected as an offlining cache agent based on
determining that the offlining cache agent is not functioning
properly.

In Step 304, the offlining cache agent is prevented from
generating a request in accordance with one or more
embodiments of the invention. In one or more embodiments
of the invention, a request includes a memory address for a
cache line. In the case of any cache agents in the system that
are not the offlining cache agent (hereinafter “participating
cache agents™), a request is sent to each participating cache
agent in the system and the offlining cache agent to deter-
mine which cache agent if any has the cache line present. As
described above in FIG. 1, the protocol requires each cache
agent in the system to respond to any request issued by a
participating cache agent (hereinafter “requesting cache
agent”).

Continuing with Step 304, in one or more embodiments of
the invention, preventing the offlining cache agent from
generating a request may correspond to modifying hardware
states (e.g., registers) of the cache controller (e.g., core,
DMA controller) associated with the offlining cache agent.
The hardware states may correspond to software threads that
control generation of requests. By modifying the hardware
states, the software threads to generate requests may be
suspended in accordance with one or more embodiments of
the invention. For example, strands which may represent the
hardware states in a core of the offlining cache agent may be
parked such that the strands no longer generate requests.

In Step 306, any traffic to the offlining cache agent is
re-routed to participating cache agents in accordance with
one or more embodiments of the invention. For example,
traffic may correspond to interrupts or allocating DMA write
requests to external devices. In one or more embodiments of
the invention, the traffic is re-routed to any participating
cache agent in the system. Alternatively or additionally, the
traffic may be re-routed to a participating cache agent that is
processing fewer instructions than another participating
cache agent. Other re-routing schemes may be used without
departing from the invention.

In Step 308, cache lines owned by the offlining cache
agent are flushed to memory in accordance with one or more
embodiments of the invention. In one or more embodiments
of the invention, flushing cache lines to memory may
correspond to copying any cache lines in a cache associated
with the offlining cache agent to memory. In one or more
embodiments of the invention, only modified cache lines are
copied to memory. Once a cache line is flushed, the entry in
the cache corresponding to the cache line is empty in
accordance with one or more embodiments of the invention.

In Step 310, a determination is made about whether
flushing of cache lines to memory is complete in accordance
with one or more embodiments of the invention. In one or

10

15

20

25

30

35

40

45

50

55

60

65

8

more embodiments of the invention, flushing of the cache
lines to memory is complete once all the entries in the cache
are empty, null, or free. If a determination is made that
flushing the cache lines is complete, the method may pro-
ceed to Step 312; otherwise the method may return to Step
308.

In Step 312, an ignore response indicator corresponding
to the offlining cache agent is set in an ignore response
register in accordance with one or more embodiments of the
invention. As described above in FIG. 2, each ignore
response indicator in the ignore response register for the
offlining cache agent describes whether responses from a
cache agent should be ignored. In one or more embodiments
of the invention, an ignore response indicator corresponding
to the offlining cache agent is set to represent that responses
from the offlining cache agent should be ignored. However,
in one or more embodiments of the invention, since each
cache agent has an ignore response register, setting the
ignore response indicator corresponding to the offlining
cache agent is local to the offlining cache agent. Setting the
ignore response indicator corresponding to the offlining
cache agent is safe because any cache(s) corresponding to
the offlining cache agent has already been flushed in accor-
dance with one or more embodiments of the invention.

In Step 314, the change to the ignore response register is
propagated to the participating cache agents in accordance
with one or more embodiments of the invention. In one or
more embodiments of the invention, each participating
cache agent is notified that the ignore response indicator
corresponding to the offlining cache agent should be set to
represent that the participating cache agents should ignore
responses from the offlining cache agent. Each participating
cache agent may then update the local copy of the ignore
response register to reflect the change to the ignore response
indicator corresponding to the offlining cache agent. In one
or more embodiments of the invention, the participating
cache agents may be notified of the change to the ignore
response indicator corresponding to the offlining cache agent
by, for example, updating a global copy of the ignore
response register that each of the participating cache agents
may access. Although FIG. 3 shows Steps 312 and 314 as
separate steps, Steps 312 and 314 may be combined into a
single step or performed using other techniques.

In Step 316, a stop traffic indicator corresponding to the
offlining cache agent is set in a stop traffic register in
accordance with one or more embodiments of the invention.
As described above in FIG. 2, in one or more embodiments
of the invention, the stop traffic indicator describes whether
any requests may be received by the offlining cache agent.
Setting the stop traffic indicator prevents any requests from
being processed by the offlining cache agent thereby idling
the interface of the offlining cache agent. In one or more
embodiments of the invention, no response is generated by
the offlining cache agent because the request is not received
by the offlining cache agent.

In Step 318, the offlining cache agent is brought offline in
accordance with one or more embodiments of the invention.
In one or more embodiments of the invention, bringing the
offlining cache agent offline may correspond to removing
clocks, power, etc. In other words, the offlining cache agent
is no longer part of the system and is not accessible to the
participating cache agents.

FIG. 4 shows a flowchart for bringing the offlining cache
agent back online after removal of the offlining in FIG. 3 in
accordance with one or more embodiments of the invention.
In one or more embodiments of the invention, FIG. 4 is
optional. For example, the offlining cache agent removed in

US 9,460,013 B2

9

FIG. 3 may be defective. Bringing the offlining cache agent
back online in this case is not needed.

In Step 402, an offlining cache agent is powered on in
accordance with one or more embodiments of the invention.
In one or more embodiments of the invention, powering on
the offlining cache agent may correspond to adding clocks
and power and/or initializing any states to the cache con-
troller associated with the offlining cache agent. Although
the offlining cache agent is not currently accessible to the
participating cache agents in the system, the offlining cache
agent may be re-entered into the system in accordance with
one or more embodiments of the invention.

In Step 404, a stop traffic indicator corresponding to the
offlining cache agent is cleared in a stop traffic register in
accordance with one or more embodiments of the invention.
In one or more embodiments of the invention, clearing the
stop traffic indicator of the offlining cache agent may cor-
respond to resetting the stop traffic indicator in the stop
traffic register to indicate to allow reception of requests by
the offlining cache agent from a requesting cache agent.

In Step 406, an ignore response indicator corresponding
to the offlining cache agent is cleared in an ignore response
register in accordance with one or more embodiments of the
invention. In one or more embodiments of the invention,
clearing the ignore response indicator corresponding to the
offlining cache agent may correspond to resetting the ignore
response indicator corresponding to the offlining cache agent
in the ignore response register to accept responses from the
offlining cache agent. As described above in FIG. 2, in one
or more embodiments of the invention, each participating
cache agent and the offlining cache agent stores a local copy
of the ignore response register and, thus, clears the ignore
response indicator corresponding to the offlining cache
agent.

In Step 408, the change to the ignore response register is
propagated to participating cache agents occurs in accor-
dance with one or more embodiments of the invention. In
one or more embodiments of the invention, each participat-
ing cache agent is notified that the ignore response indicator
corresponding to the offlining cache agent should be reset to
represent that the participating cache agents should no
longer ignore responses from the offlining cache agent. Each
participating cache agent may then update the local copy of
the ignore response register to reflect the change to the
ignore response indicator corresponding to the offlining
cache agent. In one or more embodiments of the invention,
the participating cache agents may be notified of the change
to the ignore response indicator corresponding to the offlin-
ing cache agent by, for example, updating a global copy of
the ignore response register that each of the participating
cache agents may access. Although FIG. 4 shows Steps 406
and 408 as separate steps, Steps 406 and 408 may be
combined into a single step or performed using other tech-
niques.

In Step 410, offlining cache agent is brought online in
accordance with one or more embodiments of the invention.
In one or more embodiments of the invention, bringing the
offlining cache agent online may correspond to using the
offlining cache agent as an active member of the system. In
other words, the offlining cache agent is capable of doing
useful work (e.g., respond to any requests from a requesting
cache agent, store cache lines in any cache(s) associated
with the offlining cache agent, etc.).

FIG. 5A shows a flowchart for responsiveness of an
offlining cache agent during removal of the offlining cache
agent from a system in accordance with one or more
embodiments of the invention.

10

15

20

25

30

35

40

45

50

55

60

65

10

In Step 502, a request to access a cache line is received
from a requesting cache agent in accordance with one or
more embodiments of the invention. In one or more embodi-
ments of the invention, a request includes a memory address
for a cache line to determine which of the cache agents, if
any, are associated with a cache that includes the cache line.
In one or more embodiments of the invention, a participating
cache agent is any cache agent that is in the system,
excluding the offlining cache agent.

Continuing with Step 502, as described above in FIG. 1,
the protocol requires each cache agent in the system to
respond to any request issued by a requesting cache agent.
In one or more embodiments of the invention, a requesting
cache agent is a cache agent that issues a request to the
remaining cache agents. The requesting cache agent may not
proceed until the requesting cache agent receives a response
from each of the cache agents in the system unless otherwise
specified (described below).

In Step 508, a determination is made about whether a stop
traffic indicator corresponding to the offlining cache agent is
set in accordance with one or more embodiments of the
invention. If a determination is made that the stop traffic
indicator corresponding to the offlining cache agent is set,
the method may proceed to Step 510; otherwise the method
may proceed to Step 516.

In Step 510, the request is ignored by the offlining cache
agent in accordance with one or more embodiments of the
invention. In one or more embodiments of the invention, at
this point, the request does not get processed by the offlining
cache agent because the stop traffic indicator in the stop
traffic register is set in Step 508. Because the request is
ignored by the offlining cache agent, no response is gener-
ated by the offlining cache agent.

In Step 512, a determination is made about whether a
cache of the offlining cache agent includes the cache line in
accordance with one or more embodiments of the invention.
In one or more embodiments of the invention, the offlining
cache agent includes the cache line if the cache line is
present in any caches associated with the offlining cache
agent. If a determination is made that the cache of the
offlining cache agent includes the cache line, the method
may proceed to Step 514; otherwise the method may pro-
ceed to Step 516.

In Step 514, a positive acknowledgment (Ack) response
and data in the cache line is sent to the requesting cache
agent in accordance with one or more embodiments of the
invention. In one or more embodiments of the invention, the
Ack response signifies that the cache line is present in a
cache associated with the offlining cache agent. Since the
cache line is present, the data in the cache line is also sent
to the requesting cache agent. In one or more embodiments
of the invention, flushing cache lines of any caches associ-
ated with the offlining cache agent may not have started or
completed if the cache line is present in a cache associated
with the offlining cache agent.

In Step 516, a negative acknowledgment (Nack) response
is sent to the requesting cache agent in accordance with one
or more embodiments of the invention. In one or more
embodiments of the invention, the Nack response signifies
that the cache line is not present in a cache associated with
the offlining cache agent.

FIG. 5B shows a flowchart for a requesting cache agent
during removal of the offlining cache agent from a system in
accordance with one or more embodiments of the invention.

Initially, the requesting cache agent sends a request to
access a cache line (Step 552). The request includes a
memory address for the cache line. Moreover, the request is

US 9,460,013 B2

11

sent to all cache agents in the system including the offlining
cache agent and the participating cache agents. For example,
the request may be placed on the request network (180)
connecting all of the cache agents.

In Step 554, it is determined whether the bit correspond-
ing to the offlining cache agent is set in the ignore response
register of the requesting cache agent. As discussed above,
during the removal of the offlining cache agent, the bit
corresponding to the offlining cache agent is set in the ignore
response register of the offlining cache agent. This new/
updated value of the ignore response register is eventually
propagated to all other cache agents in the system including
the requesting cache agent. Accordingly, all cache agents in
the system keep a local copy of the ignore response register.
When it is determined that the bit corresponding to the
offlining cache agent is set in the ignore response register of
the requesting cache agent, the process proceeds to Step 556.
When it is determined that the bit corresponding to the
offlining cache agent is not set in the ignore response register
of the requesting cache agent, the process proceeds to Step
562. Although Step 554 explicitly discloses “bit,” those
skilled in the art, having the benefit of this detailed descrip-
tion, will appreciate that other types of ignore request
indicators may be set in the ignore request register.

In Step 556, it is determined whether the requesting cache
agent has received a response (to the request of Step 552)
from the offlining cache agent. If no response from the
offlining cache agent has been received, the requesting cache
agent does not wait for a response from the offlining cache
agent. Instead, the requesting cache assumes the response
from the offlining cache agent is a Nack (Step 558). How-
ever, if a response from the offlining cache agent has been
received, the requesting cache agent discards the response
and replaces the response from the offlining cache agent
with a Nack (Step 560).

In Step 562, the aggregation logic of the requesting cache
agent aggregates all of the responses received from the
participating caches plus the actual response from the offlin-
ing cache (if Step 554 is false) or a Nack (if Step 554 is true).
Depending on the result of the aggregation, the requesting
cache agent may need to obtain the requested cache line
from memory.

FIGS. 6A and 6B show an example in accordance with
one or more embodiments of the invention. The following
example is for explanatory purposes only and not intended
to limit the scope of the invention.

FIGS. 6A and 6B show interactions between cache agents
in a system (i.e., participating cache agents) during removal
of'a cache agent (i.e., offlining cache agent) from the system
while transactions are in progress. Consider a scenario in
which four cache agents (i.e., cache agent A (602A), cache
agent B (602B), cache agent C (602C), and cache agent D
(602D)) are on a processor and part of the system. The
protocol dictates that each cache agent replies to any request
issued by any of the cache agents.

Cache agent A (602A) is associated with cache A (610A)
and core A (620A); cache agent B (602B) is associated with
cache B (610B) and core B (620B); cache agent C (602C) is
associated with cache C (610C) and core C (620C); and
cache agent D (602D) is associated with cache D (610D) and
core D (620D).

Cache A (610A) includes no cache lines; cache B (610B)
includes cache line B1 (612B), cache line B2 (614B), and
cache line B3 (616B); cache C (610 C) includes cache line
C1 (612C) and cache line C2 (614C); and cache D (610D)
includes cache line D1 (612D), cache line D2 (614D), and
cache line D3 (616D).

20

35

40

45

50

55

12

Turning to FIG. 6A, the processor detects that core A
(620A) associated with cache agent A (602A) is not needed
for the current work load of the processor. To save power on
the processor, the processor initiates offlining of cache agent
A (602A) and removal of cache agent A from the system.
Request B (605B) is re-routed from cache agent A (602A) to
cache agent B (602B). Thus, request table A (604A) that
includes any requests to send to the cache agents in the
system (i.e., 602B-602D) is empty. Request table C (604C)
of cache agent C (602C) and request table D (604D) of cache
agent D are also currently empty.

Cache lines in cache A (610A) associated with cache
agent A (602A) are flushed to memory, consequently, cache
A does not include any cache lines. Since cache A (610A) is
empty, ignore response register A (606A) is set from 0000 to
1000. The left most ignore response bit of 1 corresponds to
cache agent A (602A). The remaining bits correspond to
cache agent B (602B), cache agent C (602C), and cache
agent D (602D).

Although ignore response register A (606A) reflects the
change to the ignore response bit corresponding to cache
agent A (602A), ignore response register B (606B) of cache
agent B (602B), ignore response register C (606C) of cache
agent C (602C), and ignore response register D (606D) of
cache agent D (602D) are all set to 0000. The change to the
ignore response bit corresponding to cache agent A (602A)
has not yet propagated to the other cache agents (i.e.,
602B-602D). Since the change has not yet propagated, stop
traffic register A (608A) remains set to 0. Therefore, cache
agent A (602A) may still receive requests and generate
responses. Stop traffic register B (608B) of cache agent B
(602B), stop traffic register C (608C) of cache agent C
(602C), and stop traffic register D (608D) of cache agent D
(602D) are also set to 0.

Continuing with the example in FIG. 6A, request B
(605B) in request table B (604B) is sent by cache agent B
(602B) (i.e., requesting cache agent) to cache agent A
(602A), cache agent C (602C), and cache agent D (602D).
Request B (605B) is a request for data in cache line D2
(614D). Cache agent B (602B) requires a response from
each of the other cache agents (i.e., 602A, 602C-602D).
Since cache A (610A) of cache agent A (602A) is empty,
cache agent A responds to request B (605B) with a Nack.
Cache C (610C) of cache agent C (602C) does not include
cache line D2 (614D) requested in request B (605B). There-
fore, cache agent C responds to request B (605B) with a
Nack. Cache D (610D) of cache agent D (602D) includes
cache line D2 (614D) requested in request B (605B). An Ack
and data in cache line D2 (614D) are sent to cache agent B
(602B). Each of the cache agents (i.e. 602A, 602C-602D)
responded to request B (605B) thereby satisfying the
requirement of the protocol.

Turning to FIG. 6B, FIG. 6B corresponds to the four
cache agents (602A-602D) in FIG. 6A at later time point in
the removal of cache agent A (602A) than FIG. 6A.

The ignore response bit corresponding to cache agent A
(602A) (i.e., left-most bit in ignore response register A
(608A) has propagated to ignore response register B (606B)
of cache agent B (602B), ignore response register C (606C)
of cache agent C (602C), and ignore response register D
(606D) of cache agent D (602D). At this point, any request
received by cache agent A (602A) is responded to with a
Nack response. However, the requesting cache agent (602B-
602D) does not wait for any response or ignores any
response.

Continuing with the example in FIG. 6B, after propaga-
tion of the ignore response bit corresponding to cache agent

US 9,460,013 B2

13

A (602A), the stop traffic bit in stop traffic register A (608A)
is set to 1 representing that cache agent A will not process
any received request. Therefore, no response is generated.

Request table A (604A) of cache agent A (602A) and
request table C (604C) of cache agent C (602C) remain
empty. Request table B (604B) is now empty because
request B (605B) was completed in FIG. 6A. Request table
D (604D) includes request D (605D) requesting data in
cache line C3 (not shown). Request D (605D) is sent to
cache agent A (602A) (not shown), cache agent B (602B),
and cache agent C (602C). As described above, cache agent
A (602A) does not receive request D (605D) as stop traffic
register A (608A) is set to prevent any reception of request
D. Cache B (610B) of cache agent B (602B) and cache C
(610C) of cache agent C (602C) do not include cache line C3
requested in request D (605D). Therefore, cache agent B
(602B) and cache agent C (602C) both respond to request D
(605D) with a Nack. Since ignore response register D
(606D) knows from ignore response register D (606D) to
ignore and not wait for a response from cache agent A
(602A), functioning of coherency in the system is not
disturbed or affected. Cache agent D (602D) retrieves cache
line C3 from memory since cache agents that are responsive
(i.e., 602B and 602C) included cache line C3.

Embodiments of the invention may be implemented on
virtually any type of computing system regardless of the
platform being used. For example, the computing system
may be one or more mobile devices (e.g., laptop computer,
smart phone, personal digital assistant, tablet computer, or
other mobile device), desktop computers, servers, blades in
a server chassis, or any other type of computing device or
devices that includes at least the minimum processing
power, memory, and input and output device(s) to perform
one or more embodiments of the invention. For example, as
shown in FIG. 7, the computing system (700) may include
one or more computer processor(s) (702), associated
memory (704) (e.g., random access memory (RAM), cache
memory, flash memory, etc.), one or more storage device(s)
(706) (e.g., a hard disk, an optical drive such as a compact
disk (CD) drive or digital versatile disk (DVD) drive, a flash
memory stick, etc.), and numerous other elements and
functionalities. The computer processor(s) (702) may be an
integrated circuit for processing instructions. For example,
the computer processor(s) may be one or more cores, or
micro-cores of a processor. The computing system (700)
may also include one or more input device(s) (710), such as
a touchscreen, keyboard, mouse, microphone, touchpad,
electronic pen, or any other type of input device. Further, the
computing system (700) may include one or more output
device(s) (708), such as a screen (e.g., a liquid crystal
display (LCD), a plasma display, touchscreen, cathode ray
tube (CRT) monitor, projector, or other display device), a
printer, external storage, or any other output device. One or
more of the output device(s) may be the same or different
from the input device(s). The computing system (700) may
be connected to a network (714) (e.g., a local area network
(LAN), a wide area network (WAN) such as the Internet,
mobile network, or any other type of network) via a network
interface connection (not shown). The input and output
device(s) may be locally or remotely (e.g., via the network
(712)) connected to the computer processor(s) (702),
memory (704), and storage device(s) (706). Many different
types of computing systems exist, and the aforementioned
input and output device(s) may take other forms.

Software instructions in the form of computer readable
program code to perform embodiments of the invention may
be stored, in whole or in part, temporarily or permanently, on

10

15

20

25

30

35

40

45

50

55

60

65

14

a non-transitory computer readable medium such as a CD,
DVD, storage device, a diskette, a tape, flash memory,
physical memory, firmware or any other computer readable
storage medium. Specifically, the software instructions may
correspond to computer readable program code that when
executed by a processor(s), is configured to perform
embodiments of the invention.

Further, one or more elements of the aforementioned
computing system (700) may be located at a remote location
and connected to the other elements over a network (714).
Further, embodiments of the invention may be implemented
on a distributed system having a plurality of nodes, where
each portion of the invention may be located on a different
node within the distributed system. In one embodiment of
the invention, the node corresponds to a distinct computing
device. Alternatively, the node may correspond to a com-
puter processor with associated physical memory. The node
may alternatively correspond to a computer processor or
micro-core of a computer processor with shared memory
and/or resources.

Embodiments of the invention enable removal of an
offlining cache agent from a system. Specifically, embodi-
ments of the invention enable removal of the offlining cache
agent while transactions are in progress between the offlin-
ing cache agent and participating cache agents in a system.
Embodiments of the invention enable the offlining cache
agent to respond or ignore requests from any requesting
cache agent while the offlining cache agent is being removed
without disrupting the coherency between the remaining
participating cache agents.

While the invention has been described with respect to a
limited number of embodiments, those skilled in the art,
having benefit of this disclosure, will appreciate that other
embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the
scope of the invention should be limited only by the attached
claims.

What is claimed is:
1. A method for removal of an offlining cache agent,
comprising:

initiating an offlining of the offlining cache agent from
communicating with a plurality of participating cache
agents while a first transaction is in progress;

setting, based on initiating the offlining, an ignore
response indicator corresponding to the offlining cache
agent on each of the plurality of participating cache
agents;

offlining, based on setting the ignore response indicator,
the offlining cache agent; and

ignoring, based on setting the ignore response indicator, a
first response to the transaction from the offlining cache
agent.

2. The method of claim 1, further comprising:

setting, prior to offlining and after setting the ignore
response indicator, a stop traffic indicator correspond-
ing to the offlining cache agent; and

ignoring, by the offlining cache agent and based on setting
the stop traffic indicator, a second transaction to the
offlining cache agent.

3. The method of claim 1, further comprising:

stopping, based on initiating the offlining, the offlining
cache agent from generating a request; and

re-routing, based on initiating the offlining, a second
transaction to the plurality of participating cache
agents.

US 9,460,013 B2

15

4. The method of claim 1, further comprising:

powering, after offlining the offlining cache agent, the

offlining cache agent;

clearing a stop traffic indicator corresponding to the

offlining cache agent;

sending, based on clearing the stop traffic indicator, a

second transaction to the offlining cache agent;
clearing the ignore response indicator corresponding to
the offlining cache agent;

sending, based on clearing the ignore response indicator,

a second response to the second transaction;
propagating clearing the ignore response indicator to the
plurality of participating cache agents; and

onlining, based on propagating clearing the ignore

response indicator, the offlining cache agent.

5. The method of claim 1, wherein the first transaction
comprises a request to the offlining cache agent and the first
response to the request from the offlining cache agent.

6. The method of claim 1, wherein the plurality of
participating cache agents and the offlining cache agent
complies with a snoopy cache coherence protocol, and
wherein the snoopy cache coherence protocol directs each
participating cache agent of the plurality of participating
cache agents to respond to the first transaction.

7. A non-transitory computer-readable storage medium
storing a plurality of instructions for removal of an offlining
cache agent, the plurality of instructions comprising func-
tionality to:

initiate an offlining of the offlining cache agent from

communicating with a plurality of participating cache
agents while a first transaction is in progress;
set, based on initiating the offlining, an ignore response
indicator corresponding to the offlining cache agent on
each of the plurality of participating cache agents;

offline, based on setting the ignore response indicator, the
offlining cache agent; and

ignore, based on propagating setting the ignore response

indicator, a first response to the transaction from the
offlining cache agent.

8. The non-transitory computer-readable storage medium
of claim 7, further comprising functionality to:

set, prior to offlining and after setting the ignore response

indicator, a stop traffic indicator corresponding to the
offlining cache agent; and

ignore, by the offlining cache agent and based on setting

the stop traffic indicator, a second transaction to the
offlining cache agent.

9. The non-transitory computer-readable storage medium
of claim 7, further comprising functionality to:

stop, based on initiating the offlining, the offlining cache

agent from generating a request; and

re-route, based on initiating the offlining, a second trans-

action to the plurality of participating cache agents.

10. The non-transitory computer-readable storage
medium of claim 7, further comprising functionality to:

power, after offlining the offlining cache agent, the offlin-

ing cache agent;

clear a stop traffic indicator corresponding to the offlining

cache agent;

send, based on clearing the stop traffic indicator, a second

transaction to the offlining cache agent;

clear the ignore response indicator corresponding to the

offlining cache agent;

15

20

25

40

45

16

send, based on clearing the ignore response indicator, a

second response to the second transaction;

propagate clearing the ignore response indicator to the

plurality of participating cache agents; and

online, based on propagating clearing the ignore response

indicator, the offlining cache agent.

11. The non-transitory computer-readable storage
medium of claim 7, wherein the first transaction comprises
a request to the offlining cache agent and the first response
to the request from the offlining cache agent.

12. The non-transitory computer-readable storage
medium of claim 7, wherein the plurality of participating
cache agents and the offlining cache agent complies with a
snoopy cache coherence protocol, and wherein the snoopy
cache coherence protocol directs each participating cache
agent of the plurality of participating cache agents to
respond to the first transaction.

13. A system, comprising:

a plurality of cache for storing a plurality of cache lines,

and

a plurality of cache agents comprising a plurality of

participating cache agents and an offlining cache agent,
wherein each cache of the plurality of cache corre-
sponds to one of the plurality of cache agents, and
wherein the plurality of cache agents are configured to:
initiate an offlining of the offlining cache agent from
communicating with a plurality of participating
cache agents while a first transaction is in prog-
ress, wherein the first transaction is for a cache
line of the plurality of cache lines,
set, based on initiating the offlining, an ignore
response indicator corresponding to the offlining
cache agent on each of the plurality of participat-
ing cache agents,
offline, based on setting the ignore response indica-
tor, the offlining cache agent, and
ignore, based on setting the ignore response indica-
tor, a first response to the transaction from the
offlining cache agent.

14. The system of claim 13, wherein each of the plurality
of participating cache agents comprises an ignore response
register for storing the ignore response indicator.

15. The system of claim 13, wherein the offlining cache
agent comprises a stop traffic register for storing a stop
traffic indicator.

16. The system of claim 13, wherein the plurality of
participating cache agents and the offlining cache agents
each have a corresponding processing core for processing
instructions.

17. The system of claim 13, wherein the plurality of
participating cache agents and the offlining cache agents
each is a processing core for processing instructions.

18. The system of claim 13, wherein the plurality of
participating cache agents and the offlining cache agents
each have a corresponding cache comprising a plurality of
entries for storing a plurality of cache lines.

19. The system of claim 13, wherein at least one of the
plurality of participating cache agents corresponds to a
direct memory access cache.

20. The system of claim 13, wherein the plurality of cache
and the plurality of participating cache agents are located on
a processor.

